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The behavior of the main solar semidiurnal tidal mode in a

dissipative atmosphere is studied both in a rotating spherical 'atmosphere

and by means of the equivalent gravity mode approximation. The former

involves the numerical solution of a two dimensional partial differential

equation which (due to the presence of friction) is non-separable. The

latter involves approximating the tidal mode at the equator by means of

an internal gravity wave on a non-rotating plane; this approximation has

been used extensively in earlier studies of the behavior of atmospheric

tides in the thermosphere where viscosity assumes dominant importance.

In the present study, dissipation is modelled by Newionian covliiiL d~;d

Rayleigh friction, both of which are taken to increase inversely with

mean density. Coefficients are chosen to crudely simulate the effects of

molecular viscosity and conducitivity. The results of this study provide

an opportunity to evaluate the equivalent. gravity mode formalism-. Our

main findings are:

i) Below 130 km, where friction is unimportant, equivalent gravity

mode results are, for all practical purposes, identical to those at the

equator obtained from a spherical calculation.

ii) Above 130 km amplitudes over the equator obtained from the

spherical calculation are about 30% smaller than those obtained from

the equivalent gravity mode calculations. Also, there is a 150 (1/2 hour)

difference in phase.
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iii) The amplitude reduction over the equator, cited above, is

associated with a broadening of the latitudc distribution of amplitude for

the oscillatory pressure and tellperature fields within the thcrmosphcre.

There is also a significant variation of phase with latitude within the

thermosphcre. Associated with the above variations are significant

changes in the latitude distribution ofh orizontal velocity within the

thermosphere.



Equivalent Gravity Modes -- an interim evaluation

1. Introduction.

The solution of the problemn of linearized internal waves (including

tides) in an otherwise static atmnosphere v'ith friction on a rotating sphere

is rendered especially difficult, because the joint .presence of friction,

rotation and sphericity lead.to a mathematical problem in which altitude

and latitude dependence are no longer separable (Chaptnan and Lindzen,

1970). Furthermore, when the.friction is due.in significant measure to

the presence of molecular viscosity (as is the case in the thermosphere)

the resulting equation is of eighth order in altitude. Yet, the solution of

this problem is of substantial importance since within the thermosphere,

where tides virtually dominate the meteorology, we have a transition

from essentially inviscid solutions to solutions dominated by friction;

the behavior in the latter region is, significantly, determined by the

complicated transition region.

In order to obtain some insight into the above problem without

tackling the non-separability I developed what I called the equivalent

gravity mode formalism (Lindzen, 1970; 1971; Lindzen and Blake, 1971).

This formalism exploited the following facts:

i) In the absence of friction the linearized equations for internal

waves in an otherwise static atmosphere on a rotating sphere are

separable in their horizontal and vertical dependences; the same is

true on a rotating (or non-rotating) plane. The horizontal geometry
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and the rotation affect the separation constants (known as equivalent

depths, viz. , Lindzen, 197[ which in turn determline the vertical

structure. However, for the same equivalent depths one will get the

same vertical structure regardless of the horizontal geometry or

rotation.

ii) As a corollary to the above consider a planar, nonrotating

frictionless atmosphere where quite arbitrarily we identify one

horizontal direction with the North-South direction and the other with

the East-West direction. For any internal mode (whether tidal or not)

in a spherical rotating frictionless atmosphere, there exists a mode in

the nonrotating planar atmosphere which, through appropriate choice

of North-South wavenumber, will have the same East-West wavenumber

obtaining on the sphere at the equator, as well as the same period and

vertical structure as the spherical mode.

iii) The effects of friction are to a large extent determined by the ratio

of dissipative time scale to wave period.

iv) On a nonrotating plane the frictional problem is separable.

The equivalent gravity mode formalism consists in taking a wave

as described in item (ii) above and matching it to a tidal mode in a

rotating spherical atmosphere. One then examines the behavior of the

planar mode in an atmosphere whose vertical distributions of mean

temperature and friction (viscosity and ion drag) match those of the

earth's atmosphere. It was argued that the results should approximate

thosp obtained at the equator'in a full calculation on a rotating sphe-rc.
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The problem for a rotating sphere results from the fact that

latitudinal. structure of a given tidal mode will change with altitude when

friction becomes comparably important'with the coi'iolis force; the

changing latitudinal strpc.ure can then produce modifications in

vertical structure. It was felt, however, that in the neighborhood of

the equator, where Coriolis terms are zero, such effects ought to be

relatively small. It was shown, moreover, that oscillations within the

thermosphere, excited by heating within the thermosphere, were not

very sensitive to the latitude distribution of the excitation. This last

finding was particularly important for diurnal oscillations in the

thermosphere which it was shown would be almost entirely excited in

situ. Indeed the theoretical results obtained' for diurnal oscillations

(Lindzen, 1971, A-) are reasonably compatible with observations of

thermospheric daily variations.

However, the equivalent gravity mode 'formalism also suggests

that there should be, within the thermnosphere, a large selnidiurnal

oscillation (temperature amplitude 200 K) which propagates into the

thermosphere froln the nmesosphere where it is excited by ultraviolet

radiation absorbed by ozone. Semidiurnal oscillations of the predicted

magnitude have not, as yet, been found in the available thermospheric

data, and while the data are by no means certain, there is nonetheless

good reason to reexamine the theory. One of the first points one might

question (though hardly the only one) is the equivalent gravity mode
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formalism, itself. Fortunatcly, it is at least qualitatively possible to

do this without integrating an eighth order non-separable partial

differential equation. The point is that al). our arguments concerning the

equivalent gravity mnde formalism should apply as well to an atmosphere

where the friction is due to Rayleigh friction (]incar drag) with a

rate coefficient inversely proportional to density as to an atmnosphere

wherre friction is due to molecular viscosity. In the former case, we

have only to deal with a second order non-separable partial differential

equation whose numerical integration is economically feasible. It

thus becomes possible to compare an equivalent gravity mode solution

with an accurate numerical solution on a rotating sphere. Moreover,

the beight dopendednce of the quantity (where p is the

pressure oscillation and. ¥ is the mean pressure) in an atmosphere

with Rayleigh friction (and/or Newtonian cooling) increasing as 1/p

(where p is the mean density) is similar to the behavior of the

oscillatory temperature and horizontal velocity fields in an atmosphere

with molecular viscosity and thermal conductivity (Lindzen, 1968).

A study, therefore, of the behavior of I in the simple system

may offer quantitative insight into the behavior of the more realistic

system.

The study of a system with Rayleigh friction and Newtonian

cooling is the purpose of this paper.
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2,. Equations.

For the inviscid tidal problem (sec Chapinan and J,indzen (1970) for

derivations) one may reduce the linearized equations of motion to a single

equation in a single unkno-wn. A convenient choice for the unknown is

Itdo I). (1

where - Ci /C 

~c~· ~ c C.. ' t .4d

t = time, z = altitude, p = pressure, pc, = mean pressure and =

tida) pressure pertulrhation. The equation for G is

/

where J is the tidal heating per unit mass and time,

f = ,/gz , ;0 is the colatitude, s the zonal number of wvavc,

-= <- , g = acceleration of gravity, H = RT /g = local scalq height,

o Y tidal frequency, = earth's rotation rate and r = earth's radius, and

T = basic temperature. Equ. (2) may be solved by separation of variables.

The resulting equations for latitude dependence (Laplace's Tidal Fcquation) is
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O (3

w·r hn - *' s r-- c t h _

vwhere hn is the separation constant and we have assumed

G - Gh Ce) 5

Equ. (3) with the requirement of boundedness at the poles forms an

eigenfunction-eigenvaluc problem for e., and ,

If we expand J in terms of (3)'s cigenfunctions (Hough functions); i. c.

th
then the equation for the vertical structure of the n mode is

k. ;, 4

Bcv6 

The boundary conditions for (4) are /

at z = 0

(derived from the requirement 'W = 0 at z = 0),. and that no energy be

received from c:' o For waves on a planar, nonrotating atmosphere,

(3) is replaced by a trivial equation for which one has solutions of the

following form

*wV 2 > CO

;5¢- C
(s

'K C,% t - ( h ) 't- CB G- H~~~~~~~~~~~~~~~~~

L k~ .cs C y
G^,= e ,&I r% ~ tGice ,'j ;



where V/ corresponds to a zonal wavenumber, m corresponds to a

latitude wavenumber and

-- -- '-- (6

It proves useful to allow nm to be non-integral. The equation for

vertical structure remains identical to (4). This forms the basis for the

equivalent gravity mode formalisnl. The equivalent gravity wave being

a wave for which o is equal to that of a tidal mode, k -- (the

spherical mode's zonal wavenumber at the equator), and m is chosen

so that h equals the equivalent depth of the corresponding spherical mode.

The resulting gravity wave will have the same vertical structure as the

spherical mode (Lindzen and Blake, 1971). Moreover the gravity wave fields

arc m.y:ptotic to the spherical solutions as one approaches the ll.;atolr.

The assumption of the equivalent gravity mode formalism is that the

last feature renmains approximately true in the presence of friction, The

extent to which the approximation holds, however, still has not been

securely determined.

To make the problem clearer we shall explicitly introduce Rayleigh

friction and Newtonian cooling. These enter the equations of horizontal

momentum and energy as follows:

-t 52'\/co;4 @ ~ ~ a, 6 v>,, B t t (7
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where v, a are the Rayleigh friction and Newtonian cooling coefficients,

respgctively; u the northerly, v the westerly wind velocities ahd 6 T

the temperature; po is the mean density distribution.

In terms of the geopotential (or, more precisely, 6 P/o ) , the

final equation is
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..L. is related to G by:

G*--- (xvrc+ X % (, + L, Y('

Due to the joint presence of v and 0, equ. (10) is no longer. separable.

It is a two-dimnensional equation which must be solved numerically.

On the other hand the equations for a' nonrotating p]anar'atmosphere

remain separable with equs. (5) and (6) still holding. Equ. (4) becomes

c... x-2 - -\-i , (r o X, , ... 

H - o

(11

Equ. (11) must also be sblved numerically, but it is only one-dimnensional.

Our procedure will be to focus on the main sylnmmetric semidiurnal

mode for which h = 7. 85 kin, C = 4'I/1 day, and s = 2. v and a are

chosen to simulate dissipative time scales due to viscosity and conductivity;

dissipative effects are, therefore, negligible below about 100 kin. The

explicit choice is

c = -.2,14 0 to y ;% yc
w~,,, H~ co ~o~gre-'see ' ~'r

9.
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a= us i

eV -6 e1 VONa_ 1.185 x 10 sec -" (12a, b, c

a simulates in{'arod cooling (which proves to have a negligible effect

on the rnain semidiurnal mode).

Our excitation will be due to ozone and water vapor absorption,

both of which are located below 100 knm. In this region, inviscid modal

(Hough modes) structure is meaningful, and we, in fact, consider

excitation of the formn of the main semidiurnal mode; i. eo , in an inviscid

atmosphere only a single mode would be excited. The vertical distribution

of excitation is given in Chapman and Lindzen (1970). An identical

vertical distribution of excitation is used for the equivalent gravity mode

(viz., Lindzen and Blake, 1971). For T we use the ARDC standard
0

atmosphere. The composition of the atmosphere (and hence the gas

constants) are assumed constant.

Both equations (10) and (11) are solved by the method described in

Lindzen and Kuo (1970). In both instances a resolution of .5 km in the

vertical is used. In both cases solutions asymptote to & s<a -

as . Ca . The asymptotic regime sets on by 250 km,. We therefore

take : at z = 300 km. For equ. (10) we find eleven points

from pole to pole to constitute adequate resolution; 21 points altered

solutions by less than 5%. We will compare the spherical solution of

at the equator with the equivalent gravity mode solution.

We will also consider the deviations of the latitude Structures obtained
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on a sphere fromn those of inviscid lJoughl modes.

3. Results.

In Figure 1 we show the distribution with height of the amplitude

and phase of SP/p both for the e. g. m. calculation and at the

equator for the spherical calculation. Also shown are results at the

equator for a dissipationless atmosphere. The reason for showing the

dissipationless results will be discussed later. Restricting ourselves to

the two dissipative cases we see that there is virtually perfect agreenment

below about 80 km. Above 130 km noticeable differences begin to develop.

Above 200 km these differences amount to about 1/2 hour (or,

equivalently, 150) in phase; amplitudes for calculations on a rotating sphere

are about 30% less than those obtained fronm e. g. in. calculations. The'

latter difference is not surprising: when one has a transition from

exponentially increasing amplitudes to constant amplitude with height

]This is precisely the behavior of horizontal velocity and temperature

when dissipation is due to molecular viscosity and conductivity.

small variations in the height and nature of the transition can lead to

significant amplitude differences above the transition.

Between 80 kln and 130 km there are small differences between

c. g. m. and spherical calculations (amounting to a few minutes of

phase and a few percent in amplitude) which, while too small to be of
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practical significance, appear to be real. Some idea of the origin of these

small discrepancies nmay be obtained by comparing c. g.m. results with

dissipationless results in Figure la. The differences below 130 km arise

froln the fact that dissipation varying with height can cause the

reflection of internal gravity waves. This matter is reviewed in Lindzen

(1970). On the other hand, below 130 krn dissipationless and dissipative

results for a rotating sphere are virtually identical, suggesting that the

reflectivity has been substantially diminished.

A study of the variation of the seniidiurnal tide with latitude, as

obtained from the spherical calculation, casts some light on the

results shown in Figure 1; it also shows some rather unexpected

aspects of the interaction of friction and rotation in a spherical atmosphere.

In Figures 2 and 3 we show, repsectively, the variation of amplitude

and phase with height for /I' (i. e., the fractional variation of

pressure due to the main semidiurnal mode)/at different latitudes.

We see in Figure 2 that the amplitude variation is similar at all latitudes

for z A' 130 km -- indicative of the fact that the tide propagates

vertically without change of horizontal form.. Similarly, w'e see in

Figure 3 that the phase is independent of latitude below 130 kmn. These

results are exactly what is obtained from inviscid theory when only the

main mode is excited. Howecver, above 130 km wc see that the amPplitude

profiles draw closer together. More explicitly;, -- at y = . 8

(latitude 53 ) increases u to 170 m, asymptoting to a constant
(latitude = 53. 2 ) increases up to 170 km, asymptoting to a constant



13.

above this height; at y = 0 (equator, y=cos 0), on the other hand, I 1

increases up to 150 kin, then decreases about 30% before asymptoting to a

constant above 200 km. This leads to a latitudinal spreading of the

semidiurnal Inain mode between 130 km and Z00 kim. As can be seen in

Figure 3, the transition region also produces a variation of phase with

latitude that persists throughout the upper thcrnmosphere. This variation

amounts to about 900 of phase between y = 0 (the equato:) and y = 0. 8

(latitude = 53. 20).

The alteration of latitude structure within the transition region

(130-200 km) is the most significant result of the spherical calculation.

Although our artificial choice of dissipative processes precludes a

dir cct association of calculated nwit disc with thcse that rmight be

expected in the thermosphere, the calculated changes of latitude structure

should be qclualitatively indicative of what might happen in the real,

atmosphere. These changes are displayed in Figures 4a, b, c, and d

where the variation of amplitudes (units arbitrary) and phase with latitude

both below 100 km and above 200 km are shown for x , u', v' and

6 T respectively. In the frictionless region both i ' - and ji.T-

have identical horizontal structures (HIough functions). Moreover, the

latitude distribution of both is broadened inthe transition region. IHIowever,

the variation of phase with latitude (above 200 kin) is greater for 6T

than for . The effect of the transition zone on the

latitudinal structure of u I and v \ is rather striking. Below

the transition zone, the westerly velocity \ v , has a relative



14.

minimum at the equator; I vl increases away from the equator to a

maximlum near 30 which is about 17% greater than the value at the

equator and then decreases to zero at the poles. Avove the transition

zone, [ v I decreases monotonically away from the equator. The

northerly velocity, which by symmetry is zero at the equator reaches a

maximum near 40 ° below the transition, and hear 300 above the transition

zone. For all fields, there are no phase variations with latitude below

the transition zone; above the transition zone the phases of sclnidiurnal

oscillations at the equator lead those at 5Z2 by 2 to 4 hours.

4. Implications for the thermosphere.

The preceding results snow in deitail how friction dnd rotation

interact in an atmosphere where friction increases exponentially from

an inconsequential value below 130 km to values vwhich dominate atmospheric

behavior above 250 km. While the specific model for friction (and thermal

dissipation) is not realistic, the results give us insight into what is

omitted when we adopt the equivalent gravity mode formalism. The

effect of primary importance is the broadening of the latitudinal

distributions of fields like pressure and temperature with the con-

comnmitent 30% decrease of oscillatory amplitudes in the equatorial

thermosphere. Similar broadening may be expected to occur when

friction is due to molecular viscosity. Thus in Lindzen (1971) the

equivalent gravity mode formalism was used to predict a thernlospheric
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semidiurnal temperature oscillation with an amplitude of 1800 K or more

at thc equator; the present calculations suggest that calculations on a

rotating sphere might predict amplitudes on the order of only 1200 K.

As already pointed out in Lindzen (1971), the latter value is still

larger than what current observations suggest.

Similarly, the implication of the present calculations that one

should observe a phase variation with latitude should hold for more

realistic models of dissipation as well. Such behavior has obvious

ramifications for the analysis of data -- which in some instances

involves averaging over latitude, a procedure, which for phase variations

on the order of those in Figure 4d, would lead to significant underestimates

of s e-i-iciurnal amplitudes.

Finally, it should be added that the accuracy of the equivalent

gravity mode formalism at the equator is within the limits suggested in

/t.
Lindzen (1971). However, Figure 4 implies that away from the equator.

account must be taken of the variation of latitudinal structure.
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Figure Legends

Fig. la. Amplitude of 61' for the main solar semidiurnal

mode at the coquator for equivalent gravity mnode calculation

(with dissipation), and rotating, spherical calculations with

and without dissipation. (N. B. 21 pts. in latitudes have been

used for higher accuracy in the spherical calculations shown. )

Fig. lb, Same as la but for phase.

Fig, 2. Amnplitude of for the main solar senmidiurnal
10

mode at various latitudes (N. B. y = cos of latitude) for

rotating, spherical calculation with dissipation.

Fig. 3. Sarime as 2 but for phase.

Fig. 4a, Amplitude (arbitrary units) and phase (arbitrary origin) of

as functions of latitude above 200 km (dashed) and

below 100 km (solid).

Fig. 4b. Salme as 4a but for u'.

Fig. 4c. Same as 4a but for v'.

Fig.4d. Same-as 4a but.for 6T.
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